Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bi-Song Zhang

Normal College, Jinhua University, Jinhua, Zhejiang 321017, People's Republic of China

Correspondence e-mail: zbs_jy@163.com

Key indicators

Single-crystal X-ray study
$T=290 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
R factor $=0.047$
$w R$ factor $=0.080$
Data-to-parameter ratio $=17.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Tetrakis(μ-4-chlorobenzoato)bis[(4-chloro-benzoato)(1,10-phenanthroline)dysprosium(III)]

In the title dinuclear centrosymmetric compound, $\left[\mathrm{Dy}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{4}-\right.\right.$ $\left.\left.\mathrm{ClO}_{2}\right)_{6}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]$, the $\mathrm{Dy}^{\text {III }}$ atom is coordinated in a distorted square-antiprismatic geometry by two N atoms from one bidentate chelating phenanthroline ligand and six O atoms from five 4-chlorobenzoate anions. The dinuclear molecules are linked into a three-dimensional network through weak hydrogen bonds and $\pi-\pi$ stacking interactions.

Comment

Lanthanide complexes play an important role in specialty materials (Daiguebonne et al., 2000; Farrugia et al., 2000). The crystal structures of compounds of the general formula [$\left.\operatorname{Ln}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}\right)_{6}\right]$ have been reported for La, Eu and Tb (Shi et al., 2001); the related compounds $\left[\mathrm{Eu}_{2}-\right.$ $\left.\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left\{\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{COO}\right\}_{6}\right]$ (Wang et al., 1999) and $\left[\mathrm{Tb}_{2^{-}}\right.$ $\left.\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COO}\right)_{6}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ (Wang et al., 2002) are also known. The varied coordination modes of lanthanide elements and halobenzoate groups also stimulated our interest in this work; we reported $\left[\mathrm{Ho}\left(\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{COO}\right)\right.$ (phen) $(\mu$ $\left.\left.\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{COO}\right)_{4 / 2}\right]_{2}$ (Zhang et al., 2005). We have now synthesized the title new dinuclear $\mathrm{Dy}^{\text {III }}$ compound $\left[\mathrm{Dy}\left(\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{COO}\right)(\text { phen })\left(\mu-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{COO}\right)_{4 / 2}\right]_{2}$, (I).

In (I), two Dy atoms are bridged by four 4-chlorobenzoate anions to form a binuclear cage structure. Two of these 4chlorobenzoate anions also behave as chelating ligands. Another 4-chlorobenzoate anion and a 1,10-phenanthroline molecule chelate to the Dy atom (Fig. 1). The eight-coordinate environment of Dy is defined by six O and two N atoms. The chelating phen ligand is planar, and the phen ligands are sandwiched by two phen ligands from two neighboring

Received 9 August 2006
Accepted 11 September 2006

Figure 1
Molecular structure (40% probability displacement ellipsoids) of the title compound (H atoms have been omitted). Symmetry code: (i) $2-x$, $1-y,-z$; unlabelled atoms are also related to labelled atoms by this symmetry operation.

Figure 2
The hydrogen bonds and $\pi-\pi$ stacking form a two-dimensional structure (the dashed lines indicate the hydrogen bonds).
dinuclear molecules. The mean interplanar distances are 3.20 and $3.29 \AA$, which are indicative of $\pi-\pi$ stacking interactions along [100] (Fig. 2). Such weak interactions and an intermolecular $\mathrm{C} 9-\mathrm{H} 9 \cdots \mathrm{O} 4^{\text {iii }}$ [symmetry code: (iii) $1-x, 1-y$, $-z$; Table 2] hydrogen bond are apparently responsible for the supramolecular assembly of the complex molecules to generate two-dimensional layers parallel to (001). Between adjacent layers, atom C 2 acts as a donor to atom $\mathrm{Cl}^{\mathrm{ii}}$ [symmetry code: (ii) $2-x, 2-y, 1-z$] to form interlayer $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds. Through the interlayer hydrogen bonds, the resulting two-dimensional layers are held together into a three-dimensional framework.

Experimental

The dysprosium(III) complex was obtained from the reaction of freshly prepared $\mathrm{Dy}_{2}\left(\mathrm{CO}_{3}\right)_{3}$, phen and 4-chlorobenzoic acid in $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O}(1: 2 \mathrm{v} / \mathrm{v})$, freshly prepared for an optimal synthesis. 1 M $\mathrm{Na}_{2} \mathrm{CO}_{3}(6 \mathrm{ml})$ was added dropwise to a 5.0 ml aqueous solution of $\mathrm{Dy}\left(\mathrm{NO}_{3}\right)_{3}(0.086 \mathrm{~g}, 0.251 \mathrm{mmol})$. The resulting white $\mathrm{Dy}_{2}\left(\mathrm{CO}_{3}\right)_{3}$ precipitate was separated out, washed with doubly distilled water until no $\mathrm{NO}_{3}{ }^{-}$anions remained and added with continuous stirring to $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O}(15 \mathrm{ml}, 1: 2 \mathrm{v} / \mathrm{v})$ containing 1,10-phenanthroline monohydrate $(0.050 \mathrm{~g}, 0.253 \mathrm{mmol})$ and 4-chlorobenzoic acid $(0.040 \mathrm{~g}$, 0.255 mmol). The mixture was stirred for ca 2.0 h . Subsequently, the resulting suspension was heated in a 25 ml Teflon-lined stainless steel autoclave at 423 K for 7 d . After the autoclave was cooled to room temperature, brown needle crystals were obtained.

Crystal data

$\left[\mathrm{Dy}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{ClO}_{2}\right)_{6}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]$
$M_{r}=1618.72$
Triclinic, $P \overline{1}$
$a=10.071$ (2) £
$b=11.840$ (2) \AA
$c=14.300$ (3) \AA
$\alpha=111.02(3)^{\circ}$
$\beta=96.58(3)^{\circ}$
$\gamma=101.56(3)^{\circ}$

$$
V=1526.6(7) \AA^{3}
$$

$Z=1$
$D_{x}=1.761 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=2.76 \mathrm{~mm}^{-1}$
$T=290$ (2) K
Needle, brown
$0.29 \times 0.12 \times 0.08 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID diffractometer
ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.679, T_{\text {max }}=0.802$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.081$
$S=1.08$
6889 reflections
406 parameters
H -atom parameters constrained

15082 measured reflections 6889 independent reflections 5256 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.055$
$\theta_{\text {max }}=27.5^{\circ}$

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0001 P)^{2} \\
&+3.4415 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.98 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-1.15 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right)$.

$\mathrm{Dy} 1-\mathrm{O} 5^{\mathrm{i}}$	$2.276(4)$	$\mathrm{Dy} 1-\mathrm{O} 4$	$2.357(4)$
$\mathrm{Dy} 1-\mathrm{O} 2^{\mathrm{i}}$	$2.316(4)$	$\mathrm{Dy} 1-\mathrm{O} 3$	$2.476(4)$
$\mathrm{Dy} 1-\mathrm{O} 6$	$2.320(4)$	$\mathrm{Dy} 1-\mathrm{N} 1$	$2.552(4)$
$\mathrm{Dy} 1-\mathrm{O} 1$	$2.321(4)$	$\mathrm{Dy} 1-\mathrm{N} 2$	$2.622(4)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Dy} 1-\mathrm{O} 2^{\mathrm{i}}$	$79.15(14)$	$\mathrm{O} 4-\mathrm{Dy} 1-\mathrm{O} 3$	$54.20(13)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Dy} 1-\mathrm{O} 6$	$123.94(15)$	$\mathrm{O} 5^{\mathrm{i}}-\mathrm{Dy} 1-\mathrm{N} 1$	$85.72(15)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Dy} 1-\mathrm{O} 6$	$78.48(14)$	$\mathrm{O}^{\mathrm{i}}-\mathrm{Dy} 1-\mathrm{N} 1$	$80.82(14)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Dy} 1-\mathrm{O} 1$	$75.84(15)$	$\mathrm{O} 6-\mathrm{Dy} 1-\mathrm{N} 1$	$138.98(13)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Dy} 1-\mathrm{O} 1$	$124.73(13)$	$\mathrm{O} 1-\mathrm{Dy} 1-\mathrm{N} 1$	$143.52(13)$
$\mathrm{O} 6-\mathrm{Dy} 1-\mathrm{O} 1$	$76.23(13)$	$\mathrm{O} 4-\mathrm{Dy} 1-\mathrm{N} 1$	$89.15(14)$
$\mathrm{O} 5^{\mathrm{i}}-\mathrm{Dy} 1-\mathrm{O} 4$	$131.98(13)$	$\mathrm{O} 3-\mathrm{Dy} 1-\mathrm{N} 1$	$70.51(13)$
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Dy} 1-\mathrm{O} 4$	$146.69(12)$	$\mathrm{O} 5^{\mathrm{i}}-\mathrm{Dy} 1-\mathrm{N} 2$	$139.99(14)$
$\mathrm{O} 6-\mathrm{Dy} 1-\mathrm{O} 4$	$89.13(14)$	$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Dy} 1-\mathrm{N} 2$	$71.52(13)$
$\mathrm{O} 1-\mathrm{Dy} 1-\mathrm{O} 4$	$80.76(13)$	$\mathrm{O} 6-\mathrm{Dy} 1-\mathrm{N} 2$	$76.39(13)$
$\mathrm{O} 5^{\mathrm{i}}-\mathrm{Dy} 1-\mathrm{O} 3$	$79.33(14)$	$\mathrm{O} 1-\mathrm{Dy} 1-\mathrm{N} 2$	$143.77(14)$
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Dy} 1-\mathrm{O} 3$	$145.14(14)$	$\mathrm{O} 4-\mathrm{Dy} 1-\mathrm{N} 2$	$75.55(12)$
$\mathrm{O} 6-\mathrm{Dy} 1-\mathrm{O} 3$	$136.37(14)$	$\mathrm{O} 3-\mathrm{Dy} 1-\mathrm{N} 2$	$110.53(13)$
$\mathrm{O} 1-\mathrm{Dy} 1-\mathrm{O} 3$	$75.25(13)$	$\mathrm{N} 1-\mathrm{Dy} 1-\mathrm{N} 2$	$63.54(14)$

Symmetry code: (i) $-x+2,-y+1,-z$.

metal-organic papers

Table 2
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{Cl} 2^{\text {ii }}$	0.93	2.73	$3.565(7)$	150
$\mathrm{C} 9-\mathrm{H} 9 \cdots \mathrm{O} 4^{\text {iii }}$	0.93	2.51	$3.153(9)$	127
$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{O} 6$	0.93	2.47	$3.065(7)$	122

Symmetry codes: (ii) $-x+2,-y+2,-z+1$; (iii) $-x+1,-y+1,-z$.

H atoms were included at calculated positions and treated as riding atoms $\left[\mathrm{C}-\mathrm{H}=0.93 \AA\right.$ and $\left.\mathrm{U}_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$. The largest peak in the final difference map is $1.24 \AA$ from atom O6 and the deepest hole is $0.80 \AA$ from Dy1.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

The authors gratefully acknowledge the financial support of the Education Office of Zhejiang Province (grant No. 20051316).

References

Daiguebonne, C., Guillou, O. \& Boubekeur, K. (2000). Inorg. Chim. Acta, 304, 161-169.
Farrugia, L. J., Peacock, R. D. \& Stewart, B. (2000). Acta Cryst. C56, e435e436.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, The Woodlands, Texas, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Shi, Q., Hu, M., Cao, R., Liang, Y. \& Hong, M. (2001). Acta Cryst. E57, m122m123.
Wang, L.-Y., Zheng, X.-J., Jin, L.-P. \& Lu, S.-Z. (1999). Chem. J. Chin. Univ. 20, 1110-1114.
Wang, R.-F., Wang, S.-P., Shi, S.-R. \& Zhang, J.-J. (2002). J. Coord. Chem. 55, 215-223.
Zhang, B.-S., Zhu, X.-C., Yu, Y.-Y., Chen, L., Chen, Z.-B. \& Hu, Y.-M. (2005). Z. Kristallogr. New Cryst. Struct. 220, m211-m212.

[^0]: © 2006 International Union of Crystallography All rights reserved

