Received 9 August 2006 Accepted 11 September 2006

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bi-Song Zhang

Normal College, Jinhua University, Jinhua, Zhejiang 321017, People's Republic of China

Correspondence e-mail: zbs_jy@163.com

Key indicators

Single-crystal X-ray study T = 290 KMean $\sigma(\text{C-C}) = 0.009 \text{ Å}$ R factor = 0.047 wR factor = 0.080Data-to-parameter ratio = 17.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Tetrakis(µ-4-chlorobenzoato)bis[(4-chlorobenzoato)(1,10-phenanthroline)dysprosium(III)]

In the title dinuclear centrosymmetric compound, $[Dy_2(C_7H_4-ClO_2)_6(C_{12}H_8N_2)_2]$, the Dy^{III} atom is coordinated in a distorted square-antiprismatic geometry by two N atoms from one bidentate chelating phenanthroline ligand and six O atoms from five 4-chlorobenzoate anions. The dinuclear molecules are linked into a three-dimensional network through weak hydrogen bonds and π - π stacking interactions.

Comment

Lanthanide complexes play an important role in specialty materials (Daiguebonne et al., 2000; Farrugia et al., 2000). The crystal structures of compounds of the general formula $[Ln_2(C_{12}H_8N_2)_2(C_6H_5COO)_6]$ have been reported for La, Eu and Tb (Shi et al., 2001); the related compounds [Eu2- $(C_{12}H_8N_2)_2[(CH_3)_2C_6H_3COO]_6]$ (Wang et al., 1999) and $[Tb_2 (C_{12}H_8N_2)_2(CH_3C_6H_4COO)_6]$ ·H₂O (Wang et al., 2002) are also known. The varied coordination modes of lanthanide elements and halobenzoate groups also stimulated our interest in this work; we reported $[Ho(BrC_6H_4COO) (phen)(\mu BrC_6H_4COO)_{4/2}$ (Zhang et al., 2005). We have now synthe- Dy^{III} dinuclear sized the title new compound $[Dy(ClC_6H_4COO) (phen)(\mu-ClC_6H_4COO)_{4/2}]_2, (I).$

In (I), two Dy atoms are bridged by four 4-chlorobenzoate anions to form a binuclear cage structure. Two of these 4chlorobenzoate anions also behave as chelating ligands. Another 4-chlorobenzoate anion and a 1,10-phenanthroline molecule chelate to the Dy atom (Fig. 1). The eight-coordinate environment of Dy is defined by six O and two N atoms. The chelating phen ligand is planar, and the phen ligands are sandwiched by two phen ligands from two neighboring

© 2006 International Union of Crystallography All rights reserved

Figure 1

Molecular structure (40% probability displacement ellipsoids) of the title compound (H atoms have been omitted). Symmetry code: (i) 2 - x, 1 - y, -z; unlabelled atoms are also related to labelled atoms by this symmetry operation.

Figure 2

The hydrogen bonds and π - π stacking form a two-dimensional structure (the dashed lines indicate the hydrogen bonds).

dinuclear molecules. The mean interplanar distances are 3.20 and 3.29 Å, which are indicative of π - π stacking interactions along [100] (Fig. 2). Such weak interactions and an intermolecular C9–H9···O4ⁱⁱⁱ [symmetry code: (iii) 1 - x, 1 - y, -z; Table 2] hydrogen bond are apparently responsible for the supramolecular assembly of the complex molecules to generate two-dimensional layers parallel to (001). Between adjacent layers, atom C2 acts as a donor to atom Cl2ⁱⁱ [symmetry code: (ii) 2 - x, 2 - y, 1 - z] to form interlayer C–H···Cl hydrogen bonds. Through the interlayer hydrogen bonds, the resulting two-dimensional layers are held together into a three-dimensional framework.

Experimental

The dysprosium(III) complex was obtained from the reaction of freshly prepared Dy₂(CO₃)₃, phen and 4-chlorobenzoic acid in CH₃OH/H₂O (1:2 ν/ν), freshly prepared for an optimal synthesis. 1 *M* Na₂CO₃ (6 ml) was added dropwise to a 5.0 ml aqueous solution of Dy(NO₃)₃ (0.086 g, 0.251 mmol). The resulting white Dy₂(CO₃)₃ precipitate was separated out, washed with doubly distilled water until no NO₃⁻ anions remained and added with continuous stirring to CH₃OH/H₂O (15 ml, 1:2 ν/ν) containing 1,10-phenanthroline monohydrate (0.050 g, 0.253 mmol) and 4-chlorobenzoic acid (0.040 g, 0.255 mmol). The mixture was stirred for *ca* 2.0 h. Subsequently, the resulting suspension was heated in a 25 ml Teflon-lined stainless steel autoclave at 423 K for 7 d. After the autoclave was cooled to room temperature, brown needle crystals were obtained.

Crystal data

 $\begin{bmatrix} Dy_2(C_7H_4ClO_2)_6(C_{12}H_8N_2)_2 \end{bmatrix}$ $M_r = 1618.72$ Triclinic, $P\overline{1}$ a = 10.071 (2) Å b = 11.840 (2) Å c = 14.300 (3) Å $\alpha = 111.02$ (3)° $\beta = 96.58$ (3)° $\gamma = 101.56$ (3)°

Data collection

Rigaku R-AXIS RAPID diffractometer ω scans

Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{\min} = 0.679, T_{\max} = 0.802$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.081$ S = 1.086889 reflections 406 parameters H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

Dy1-O5 ⁱ	2.276 (4) Dy1-O4		2.357 (4)
Dy1-O2 ⁱ	2.316 (4)	Dy1-O3	2.476 (4)
Dy1-O6	2.320 (4)	Dy1-N1	2.552 (4)
Dy1-O1	2.321 (4)	Dy1-N2	2.622 (4)
$O5^i - Dv1 - O2^i$	79.15 (14)	O4-Dv1-O3	54.20 (13)
$O_{5}^{i} = Dy_{1}^{i} = O_{2}^{i}$ $O_{5}^{i} = Dy_{1}^{i} = O_{6}^{i}$	123.94 (15)	$O_4 = Dy_1 = O_5$ $O_5^i = Dy_1 = N_1$	85.72 (15)
$O_{2^{i}} - D_{y1} - O_{6}$	78.48 (14)	$O_{2^{i}}$ D_{y1} N_{1} N_{1} $O_{2^{i}}$ D_{y1} N_{1}	80.82 (14)
$O_2 = Dy_1 = O_0$ $O_2^i = Dy_1 = O_1$	75.84 (15)	$O_2 = Dy_1 = N_1$ $O_6 = Dy_1 = N_1$	138.98 (13)
	· · ·	2	· · ·
$O2^{i}-Dy1-O1$	124.73 (13)	O1-Dy1-N1	143.52 (13)
O6-Dy1-O1	76.23 (13)	O4-Dy1-N1	89.15 (14)
$O5^{1}$ -Dy1-O4	131.98 (13)	O3-Dy1-N1	70.51 (13)
$O2^{i}-Dy1-O4$	146.69 (12)	$O5^{1}-Dy1-N2$	139.99 (14)
O6-Dy1-O4	89.13 (14)	O2 ⁱ -Dy1-N2	71.52 (13)
O1-Dy1-O4	80.76 (13)	O6-Dy1-N2	76.39 (13)
$O5^{i} - Dy1 - O3$	79.33 (14)	O1-Dy1-N2	143.77 (14)
$O2^{i} - Dy1 - O3$	145.14 (14)	O4-Dy1-N2	75.55 (12)
O6-Dy1-O3	136.37 (14)	O3-Dy1-N2	110.53 (13)
O1-Dy1-O3	75.25 (13)	N1-Dy1-N2	63.54 (14)

Symmetry code: (i) -x + 2, -y + 1, -z.

 $V = 1526.6 \text{ (7) } \text{\AA}^{3}$ Z = 1 $D_{x} = 1.761 \text{ Mg m}^{-3}$ Mo K\alpha radiation $\mu = 2.76 \text{ mm}^{-1}$ T = 290 (2) KNeedle, brown $0.29 \times 0.12 \times 0.08 \text{ mm}$

15082 measured reflections 6889 independent reflections 5256 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.055$ $\theta_{\text{max}} = 27.5^{\circ}$

$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0001P)^2 \\ &+ 3.4415P] \\ &where \ P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\rm max} = 0.001 \\ \Delta\rho_{\rm max} = 0.98 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -1.15 \ {\rm e} \ {\rm \AA}^{-3} \end{split}$$

Table 2	
Hydrogen-bond geometry (Å, °).	

$\overline{D - \mathbf{H} \cdots \mathbf{A}}$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2-H2\cdots Cl2^{ii}$	0.93	2.73	3.565 (7)	150
C9−H9···O4 ⁱⁱⁱ	0.93	2.51	3.153 (9)	127
$C10-H10\cdots O6$	0.93	2.47	3.065 (7)	122

Symmetry codes: (ii) -x + 2, -y + 2, -z + 1; (iii) -x + 1, -y + 1, -z.

H atoms were included at calculated positions and treated as riding atoms $[C-H = 0.93 \text{ Å} \text{ and } U_{iso}(H) = 1.2U_{eq}(C)]$. The largest peak in the final difference map is 1.24 Å from atom O6 and the deepest hole is 0.80 Å from Dy1.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXL97*; software used to prepare material for publication: *SHELXL97*.

The authors gratefully acknowledge the financial support of the Education Office of Zhejiang Province (grant No. 20051316).

References

- Daiguebonne, C., Guillou, O. & Boubekeur, K. (2000). *Inorg. Chim. Acta*, **304**, 161–169.
- Farrugia, L. J., Peacock, R. D. & Stewart, B. (2000). Acta Cryst. C56, e435e436.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Shi, Q., Hu, M., Cao, R., Liang, Y. & Hong, M. (2001). Acta Cryst. E57, m122– m123.
- Wang, L.-Y., Zheng, X.-J., Jin, L.-P. & Lu, S.-Z. (1999). Chem. J. Chin. Univ. 20, 1110–1114.
- Wang, R.-F., Wang, S.-P., Shi, S.-R. & Zhang, J.-J. (2002). J. Coord. Chem. 55, 215–223.
- Zhang, B.-S., Zhu, X.-C., Yu, Y.-Y., Chen, L., Chen, Z.-B. & Hu, Y.-M. (2005). Z. Kristallogr. New Cryst. Struct. 220, m211–m212.